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Abstract

We present the first results of time dependent two-fluid cosmic-ray (CR) modified MHD
shock simulations. The calculations were carried out with a new numerical code for 1-D
ideal N[HD. By coupling this code with the CR energy transport equation we can simulate
the time-dependent evolution of MHD shocks including the acceleration of the CR and
their feedback on the shock structures. We report tests of the combined numerical method
including comparisons with analytical steady state results published earlier by Webb, as
well as internal consistency checks for more general MHD CR shock structures after they
appear to have converged to dynamical steady states. We also present results from an
initial time dependent simulation which extends the parameter space domain of previous
analytical models. These new results support Webb's suggestion that equilibrium oblique
shocks are less effective than parallel shocks in the acceleration of CR. However, for realistic
models of anisotropic CR diffusion. oblique shocks may achieve dynamical equilibrium on
shorter timescales than parallel shocks.
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1. Introduction

Nonlinear theories of diffusive shock acceleration have demonstrated the importance of
cosmic-ray (CR) feedback on the evolution of shock structures (e.g., Blandford & Eichler
1987). Using two-fluid models it has een shown (e.g. Drury& Volk 1981, Achterberg
et. al. 1934, Kang & Jones 1990) that CR pressures can become large enough to
smooth shocks. eliminating the entropy generating gas sub-shock. More generally, the CR
feedback modifies the efficiency of energy transfer from gas to CR in the shock. Recent
numerical simulations (e.g.. Drury & Falle 1987, Falle & Giddings 1989, Jones & Kang
1990. Kang & Jones 1991, Kang. Jones & Ryu 1992) have also shown the importance
of time-dependent effects in the determination of CR modified shock properties. For the
most part, past studies of CR modified shocks have focused on pure hydrodynamical,
(or parallel. sonic mode) models of the shock dynamics. Magnetic fields, however, will
generally be dynamically important in many environments where particle acceleration
occurs. It has been suggested that components of the magnetic field which are aligned
perpendicular to the shock normal (tangent to the shock face) can alter the efficiency
of the acceleration process. Jokipii (1987) has pointed out that. for standard models
of CR anisotropic diffusion (see equation [4.1] below) perpendicular components of the
field will decrease the shock crossing time for a CR particle, increasing the rate at which
individual particles gain energy from the shock. On the other hand, Baring, Ellison & Jones
(1993) have shown that the efficiency of thermal particle injection into the CR population
can be dramatically decreased by perpendicular magnetic field components. ;[From these
examples it is clear that to wnderstand the fundamental nature of shock acceleration in
wore realistic astrophysical settings. full MHD calculations are needed. Two-fluid models
of CR transport along the lines introduced by Drury & Volk (1981) are an efficient means to
hegin such explorations. Such models enable one to economically calculate the dynamical
features of fows within the constraints imposed by the need to estimate a priort some
closure parameters for the CR. Equilibrium MHD CR-modified shock structures have been
calculated by Webb (1933) using these methods for the case where the gas is cold and its
pressure can be ignored. Webb’s caleulations demonstrated that. as for the CR-modified
oas dynamic fows. both sub-shock and smoothed. CR dominated solutions to the MHD CR
shock equations were possible. However. his solutions suggested that. in the limited range
of conditions he could consider. shock acceleration of cosmic-rays was less effective when
the upstream tangential components of the field were strong. Among other consequences
this appears to expand the portions of the shock parameter space that lead to sub-shock
solutions. That could impact on such issues as low energy injection processes and the
momentum distribution of the CR.

Some subsequent steady state two-fluid analyses. considering a wider parameter space
support the above impressions (Ixennel et al 1985. Webb et al 1986). In this paper we report
the first results of time dependent MHD CR two-fluid simulations. We present tests of
a new numerical code against Webb's analytical models as well as more general internal
checks on the code’s ability to evolve shocks to self-consistent steady state MHD CR
structures. Our simulations confirm Webb's calculations. Our numerical models also allow
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us to extend Webb's calculations by lifting the cold gas, (P4 = 0), restriction to examine
the effects of a full range of initial parameters on C R-modified MHD shock structures.

2. Methods

We solve the equations of ideal MHD for one dimensional flow in Cartesian coordinates
(e.g.. Jeffrey 1963). As with two-fluid gas dynamic models the conservation equations are
modified to include momentun and energy source terms from CR feedback (e.g., Drury &
Volk. 1981. Jones & Kang. 1990). The NMHD equations are written 1n conservative, vector
form as 9 IF
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The CR are themselves treated as a massless. diffusive fluid through a conservation
equation for the CR energy. E.. derived from the diffusion-advection equation (Skilling
1975): namely.
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Pe = (7e — 1)E.. 7 (2.7)
and the magnetic field components are expressed in rationalized units

B
Var

In the expressions presented above the following definitions hold: p is the mass density;
e, By and uy. us. By, B- are the components of velocity and magnetic field parallel
and perpendicular to shock front: Py, 7 and P,. ~¢ are the gas and cosmic-ray pressures
and adiabatic indices. and & is the energy weighted spatial diffusion coefficient for the CR
parallel to the shock normal. The quantity S, is a term that allows direct energy transfer
from the gas to the CR. such as through the low energy injection of thermal particles into
the CR population (e.g.. Jones & Kang 1990). This is introduced for completeness, but
for the present. we set Se = 0. In this discussion we set 4 = 5/3, while 7, which depends
upon the mix of nonrelativistic and relativistic particles in the CR population, will be
treated as an input parameter. In general both ¢ and & are properties of the solution, so
the need to specify their propertics @ prior is the major drawback of the two-fluid model.

B —

In the interest of simplicity we will not consider here fows with tangential magnetic
ficld rotations. although the numerical code 1s quite capable of handling such features.
Thus. without further loss of generality we can place the magnetic field in the X-Z plane,
B = (B,.0.B.). We will also restrict ourselves to flows with no upstream tangential
velocity, wy = uz = 0. All of the simulations discussed here are essentially piston driven
Jiock tubes. We establish the Hows by projecting magnetized fluid with embedded CR
i from the right boundary. using an open boundary condition and reflecting it off a
wall {piston) at the left boundary. The tangential magnetic field at the left boundary is
“nirrored” in the same manner as the gas density. Previous simulations of CR modified
hiocks have shown that their time to evolve to dynamical equilibrium scales with the so-
called diffusion time. t 4. (e.g. Jones & Kang 1990), which in the present case is conveniently
expressed as

L (2.9)

where v, is the shock speed (see equation. 3.2). In our discussion below we will express
simulation times in units of ¢4, appropriate to that simulation. The width of a CR-modified
choek transition scales with the related diffusion length scale. x4

,\‘
Ty = — = tqus. (2.10)
ty
To obtain accurate numerical results with the methods we employ it is important that
computation zones be small enough to resolve the diffusive shock features on this scale.
For our discussion we define, therefore. the resolution ratio of each simulation to be,

Ld 2
L= —. 2.11
2y o ( )

Our numerical method solves equation [2.1] through the second order finite difference
“Total Variation Diminishing” (TVD) gas dynamics method of Harten (Harten 1981)
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extended to MHD (Ryu & Jones 1993). The pure MHD (S = 0) form of the equation
is solve with the aid of an approximate Riemann solver, used to estimate the fluxes, F.
CR source corrections, S. are then added in a manner preserving second order accuracy.
Shocks and other discontinuities are generally resolved within a few zones. The CR energy
equation is solved using a second order combined monotone advection and Crank-Nicholson
scheme. Further details of the method will be presented elsewhere (Frank, Jones & Ryu, in
preparation). A pure gas dynamical version of the code was tested against both analytical
steady state solutions and numerical time dependent models calculated with our well-
tested PP code (Jones & Kang 1990). with excellent agreement. The pure MHD code
was tested against a variety of 1-D shock tube problems involving all three families of
\[HD waves using a nonlinear NIHD Riemann solver (Ryu & Jones 1993).

3. Results: Comparisons with Analytical Models

In order to test the accuracy of our numerical method we first attempted to reproduce
the analvtical steady state solutions of Webb (1983). In that paper Webb demonstrated
in addition to discontinuous gas “sub-shock™ solutions with a smooth CR shock precursor,
that one may obtain completely smooth “shock™ solutions to the MHD CR equations if
the downstrean: velocity remains super-Alfvénic and the upstream CR pressure, Pe, is
high. That behavior is analogous to smooth gas dynamic shock solutions identified earlier
by Drury & Volk (1981). However. Webb was able to consider only flows in which the
upstream gas was cold: i.e.in which P, = 0.

T figures 1 and 2 we present the time-asymptotic shock structures formed in numerical
simulations with upstream conditions corresponding to those in Webb’s paper (his figure 7
and figure ). The upstream conditions for these simulations are given, as models 1 and 2, 1n
table 1. These simmlations were performed with a constant CR diffusion coeflicient, k = 01.
The resolution ratios. n .. for models 1 and 2 are n, = 21 and 32 respectively. The Alfvénic
\Mach munbers for models 1 and 2 ave M, = vy /p/Br =1 and 2 respectively where uy is
the piston speed. In these models 5 = 4/3. The simulations where carried out until the
postshock state appeared steady: namely. 1+ ~ 30t y. The resultant shock transformations
provide excellent agreement with our best estimates of the downstream states found by
Webb. The largest uncertainties in the comparison are. in fact, the determination of the
downstream states from Webb's figures. For model 2 the entropy, s = log(Pg/p7), (not
shown in the figure) increases though the shock. demonstrating that the flow contains an
MHD fast mode sub-shock. as predicted by Webb. The entropy for the flow in figure 1
shows no increase, again as predicted. Recall that these particular calculations were meant
to be carried out under Webb's cold gas (Py = 0) restriction. For numerical reasons the
upstream gas pressure was set in practice to be a small fraction (10 ~3) of the CR pressure.
As an additional comparison we have also reproduced the pure perpendicular (B = 0)
amooth and MHD sub-shock models of Webb with the accuracy comparable to that shown
in figures 1 and 2.

Our previous simulations of CR-modified gas shocks required numerical grids that over
resolved the CR shock precursor by roughly a factor of 10 to assure high accuracy (Jones &
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Kang 1990). In order to explore the dependence of the accuracy on numerical resolution for
these MHD simulations we have run a series of tests with the upstream conditions of model
2. varying the numerical resolution. We ran simulations with n, = 4,8,16,32. In figure 3
we plot a measure of the fractional error in the downstream CR pressure, (compared with
the value for the highest resolution case, n, = 32),

ec = Pe(nr) — Pc(32)
P.(32).

(3.1)

The Figure shows that the simulated shocks converge quickly once ny > 10. As mentioned
above. that state is in good agrecment with WebDb's analytical result. The converged
numerical postshock CR pressure that is about 4% higher than our estimate of Webb’s
result. although we attribute much of this error to uncertainties in reading final states from
published figures rather than tables. These results agree well with previously mentioned
oas dynamic behaviors found by Jones & Kang (1990). We believe the limiting factor
to be the accuracy of the Crauk-Nicholson method used for updating the diffusive CR
energy equation. As a further test of the numerical method we have performed tests of the
self-consistency of more general steady state \IHD CR shock solutions. This was done by
testing the accuracy of various MHD jump conditions for apparently steady shocks in the
shock frame. For example. the various momentum components of the full flux vector, F,
in equation [2.3] should be the same across the shock when measured in that frame (with
F, corrected to iuclude P.). The shock velocity for this exercise was determined from
the conservation of mass equation for a steady shock transformed into the piston frame;
namely.

Uy = M (3.2)

(1]

where [ | refers to differences across the shock. We find that for the simulations with
ny > 10 the jump conditions were satisfied to better than one part in 1 x 104,

4. Finite Gas Temperature MHD Shocks

Since our numerical code solves the full \IHD CR two-fluid equations there is no need
to restrict investigations to those cases where Py = 0. In figure 4 we present the results
from a simulation of an MHD CR shock formed from gas of finite upstream pressure, Pg.
The upstream conditions for this simulation. model 4. 1s presented in table 1. We note
that the sonic Mach number in this case is Mg = 4. The Alfvénic Mach number Mg = 12.
Standard weak scattering models of particle diffusion lead to differences in diffusion across
and along field lines. Thus ~. which controls diffusion along the shock normal should
depend on the angle between field and the shock normal, ¢ = tan ~I( gf-). Thus we adopt

w of a form. (e.g., Webb 1983, Jokipii 1987, Zank et. al. 1990), ’
ootk sin? .
K=Ky cosT o4 K sm” o, (4.1)

where the directions || and L refer to the magnetic field direction. Note, of course, that ¢ is
generally a changing function of space and time. For this initial exploration we arbitrarily
set h” = .01 =10 x Ky



In general P, develops more rapidly for a stiffer CR equation of state (Jones & Kang
1990). Thus. in order to keep the computational costs low for these first tests we used
1¢ = 8/3 in the following model. This would influence the detailed properties of the steady
state How. but will not alter the qualitative character in ways that are important to the
present discussion.

In figure 4 we illustrate the evolution of a time dependent, finite gas pressure simulation.
In this model the upstream magnetic field angle is 0, = 30°. We present results at three
different times: t = 12,24, and 35¢,. Since ~ is not a constant in space or time in this
simulation. we define t, here in terms of x = 0.01. Figure 4 shows a strong fast mode
shock driven by the piston. That shock has become almost smoothed by the CR pressure.
Comparisons of this model with an analogous parallel field (¢ = 09) simulations show a
number important differences. First. the parallel shock model reaches a dynamical steady
state more slowly than the oblique shock case. That is simply because, according to
equation [4.1] the diffusion coefficient. w. in the parallel case is greater, so that energy
eain by the CR is slowed (e.g.. Jokipii 1987}, Ou the other hand. while the dynamical
steady state may be reached more quickly in oblique shocks than in parallel shocks the
effectiveness of the acceleration in the obligue case is reduced. The downstream value of
P. in the oblique shock case is decreased by 3% from what is obtained in the parallel shock
model. Tt is reasonable to expect that i the oblique models the upstream momentum flux
which would have gone into accelerating CR is being used to do work on the tangential
magnetic field. We note that behind the fast mode shock a weaker slow mode shock
compresses the CR driven transition density spike (see Jones & Kang 1990 for a discussion
of this feature). Close examination also shows that CR particle acceleration is taking place
as that slow mode shock develops. Modification of the density spike. which can only be
seen in time dependent models. is an example the additional complications which arise due
to the multiple wave families present in MHD.

5. Conclusions

1) The numerical code we have developed accurately computes two-fluid models of
CR-modified MHD shocks. If the resolution ratio defined in the text, n, > 10, then the
time asymptotic properties of the simulations appear to converge to analytically predicted
steady states. The time asymptotic numerical shocks are also internally consistent in terms
of conservation laws expected to be satisficd across steady shocks to at least one part in
101,

2) Because of the work done on tangential fields within the shocks, time asymptotic
particle acceleration will tend to be more efficient in parallel shocks than in oblique
shocks. However, the oblique shocks reach dynamical steady states more quickly for a
given diffusion coefficient parallel to the magnetic field.

3) Transient features develop from the MHD fast mode CR shocks similar to those seen
in pure CR hydrodynamical shocks. However. these transients are modified and made more
complex by the development of MHD slow mode shocks.
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Fig.

Fie.

Figure Captions

1.— Model 1 in table 1. MHD CR shock transition region for a piston driven shock
with upstream conditions takeu from figure 7 of Webl (1983). Shown are the density,
p. normal component of velocity, v, tangential velocity, us, tangential component of
magnetic field. B:. magnetic field orieutation angle. o = fan_l(g%), and cosmic-ray
pressure. Pe. Sce table 1 for upstream flow conditions. The abscissa is given in units of
diffusion length g = #/u,. The dashed lines are post-shock values taken from Webb’s
figure 7. except in the plot of w. where the value was calculated using equation [3.2]
and the MHD steady state jump conditions.

2. \odel 2 from table 1. MHD CR Shock transition region for a piston driven
shock with upstream conditions taken from WebD's figure 8.

3. - Fractional crror (equation [3.1} in the computed value of the post-shock CR
pressure. Pe. in model 1 as a function of resolution. 1, = ralAr.

. 4.- Model 3 from table 1. This model has an upstream field orientation, ¢ o = 30°.

Results ave shown at ¢ = 12,24 and 36¢ 4.
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Table 1
Upstream Conditions for Models

Bx Bz Dg L
32 45 0.0 25
32 32 0.0 075

05 03 1.49x103  1.49x1073

K Transition
.01 smooth

.01 sub-shock
k(B) smooth
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